
Introduction

Operators

Operators

• We have to operate the variables and constants.

• Many language has operators in the form of
keywords.

• Operators in c are mostly made of signs that are
not part of alphabet but sign is available on
keyboard. That why operators are short.

• Ex a=5;

• Left of assignment operator is called LVALUE and
right of assignment operator is called right value.

• Lavlue is a variable whereas rvalue can be
either a constant or a variable.

• Most important rule of assignation is right to
left value.

• A=b;

• We are assigning the value of b to A at the
moment only, later change of b will not effect
the new value of A.

• Arithmetic operators

• +,-,*,/%(modulo)

• A=11%3

• A=2

• Compound assignment(+=,-=,
*=,/=,%=,<<=,|=)

• A+=5

• A=A+5

• Increase and decrease operators

• C++ can be read as c=c+1;

• Or c+=1

• Realational or equality operator

• ==

• !=

• >

• <

• >=

• <=

Logical operators

• !(5==5) is a false

• Logical&& and || are used when evaluating
two expressions to obtain a single expression.

Conditional operator?

• Condition ? Result1 :result2

• 7==5 ? 4:3 ans 3

Bitwise operator(&|^~<<>>

• &and

• | or

• ^ Xor

• ~not

• << SHL

• >> SHR

Explicit type casting operator.

• Type casting operator allow you to convert a data type
to another data type.

• Int i;
• Float f =3.14;
• i=(int)f;
• (int) is the type casting operator.
• Another method
• i= int(f);
• Int(f) is the functional notation.
• Sizeof()
• It returns the size of data type.

Declarations (mdu 08)

• Purpose of declaration

• 1. Choice of storage representation.

• 2.Storage management.

• Polymorphism

• 4. type checking.

Type checking(mdu 06,07,08,05)

• Type checking means that each operation
executed by a program recieves the proper
number of arguments of proper data type.

• For unary operation one arg is mandatory.

• For b

• Binary operation two args are mandatory.

• Type checking can be run time(dynamic)

• Or compile time.

• Advantages of dynamic time binding is
flexiblity

• Disadvantage of dynamic time binding is
difficult to debug.

• Extra storage is required.

Strongly typed language.

If we detect all types of errors statically in a
program than language

 is strongly typed.

Type conversion and coercion

• If during type checking , a mismatch occurs between
actual type of args and expected

• Then it may flag as an error.
• A coercion (implicit type conversion)can be applied to

change the type of actual argument to correct type.
• Language provides type conversion in
• Built in function. Ex round(3.14) converts to integer.

(Int)x converts to in integer type.
• As coercion;- if the args for an arithmetic operation

such as + are of int,real int is automatically converted
to float.

Examples in Pascal:

 var A: real;

 B: integer;

A := B - Implicit, called a coersion - an automatic
conversion from one type to another

A := B is called a widening since the type of A has
more values than B.

B := A (if it were allowed) would be called a
narrowing since B has fewer values than A.
Information could be lost in this case.

In most languages widening coersions are usually
allowed;

narrowing coersions must be explicit:

 B := round(A); Go to integer nearest A

 B := trunc(A); Delete fractional part of A

